

Slenderness Effects for Columns in Non-Sway Frame - Moment Magnification Method (CSA A23.3-14)

Slender Concrete Column Design in Non-Sway Frame Buildings

Evaluate slenderness effect for columns in a non-sway frame multistory reinforced concrete building (Q is computed to be much less than 0.05) by designing a two-story high column in the middle of an atrium opening at the second-floor level. The design forces obtained from a first-order analysis are provided in the design data section below. The story height is 4.3 m. it is assumed that the column only resists gravity loads. Compare the calculated results with the values presented in the Reference and with exact values from <u>spColumn</u> engineering software program from <u>StructurePoint</u>.

Figure 1 - Slender Reinforced Concrete Column Cross-Section

Contents

1.	Factored Axial Loads and Bending Moments	2
	1.1. Load Combinations – Factored Loads	2
2.	Slenderness Effects and Sway or Non-sway Frame Designation	2
3.	Effective Length Factor (k)	2
4.	Check if Slenderness can be Neglected	4
5.	Moment Magnification – Non-Sway Frame	4
	5.1. Calculation of Critical Load (Pc)	5
	5.2. Calculation of Magnified Moment (M _c)	6
6.	Column Design	6
7.	Column Design - spColumn Software	7
8.	Summary and Comparison of Design Results	.18
9.	Conclusions & Observations	.19
10	Effects of M _{2 min} on Slenderness Calculations for Non-Sway Column per CSA A23.3	20

CONCRETE SOFTWARE SOLUTIONS

Code

Design of Concrete Structures (CSA A23.3-14) Explanatory Notes on CSA Standard A23.3-14

Reference

Concrete Design Handbook, Fourth Edition, 2016, Cement Association of Canada (CAC), Example 8.1.

Design Data

Concrete f_c ' = 40 MPa ρ_c = 2400 kg/m³

Steel $f_y = 400 \text{ MPa}$

Slab: $h_s = 150 \text{ mm}, \ b_{eff} = 1800 \text{ mm}$

Beams: $h = 500 \text{ mm}, b_w = 400 \text{ mm}, l = 7 \text{ m}$

Columns: h = 500 mm, b = 500 mm

Service design forces obtained from first-order analysis from the reference:

Table 1 - Column service loads						
Lood Coso	Axial Load,	Bending Moment, kN.m				
Load Case	kN	Тор	Bottom			
Dead, D	1776	-130	-15			
Live, L	1320	-79	-8			

Figure 3 – Service Design Forces

Structure F

1. Factored Axial Loads and Bending Moments

1.1. Load Combinations - Factored Loads

CSA A23.3-14 (Annex C, Table C.1a)

Table 2 - Column factored loads									
CSA A23.3-14	Vo. Load Combination		Axial Ben Load,	Bending Moment, kN.m		M _{Top,ns}	M _{Bottom,ns}	M _{Top,s}	M _{Bottom,s}
Reference			kN	Тор	Bottom	KIN.III	KIN.III	KIN.III	KIN.III
Annex C	1	1.4D	2486	182	21	182	21	0.0	0.0
Table C.1a	2	1.25D + 1.5L	4200	281	31	281	31	0.0	0.0

2. Slenderness Effects and Sway or Non-sway Frame Designation

Columns and stories in structures are considered as non-sway frames if the stability index for the story (Q) does not exceed 0.05. <u>CSA A.23.3-14 (10.14.4)</u>

The reference assumed that the Q value is much less than 0.05. Therefore, the frame is considered as a non-sway frame.

3. Effective Length Factor (k)

$$I_{column} = 0.7 \times \frac{c^4}{12} = 0.7 \times \frac{500^4}{12} = 3.65 \times 10^9 \text{ mm}^4$$

$$E_c = \left(3,300 \times \sqrt{f_c} + 6,900\right) \left(\frac{\gamma_c}{2,300}\right)^{1.5}$$

$$E_c = \left(3,300 \times \sqrt{40} + 6,900\right) \left(\frac{2,400}{2,300}\right)^{1.5} = 29602 \text{ MPa}$$

For column being designed:

$$\frac{E_c \times I_{column}}{l_c} = \frac{29602 \times 3.65 \times 10^9}{8600} = 1.25 \times 10^{10} \text{ N.mm}$$

For other columns:

$$\frac{E_c \times I_{column}}{l_c} = \frac{29602 \times 3.65 \times 10^9}{4300} = 2.51 \times 10^{10} \text{ N.mm}$$

For beams framing into the columns:

$$\frac{E_b \times I_{beam}}{l_b} = \frac{29602 \times 2.70 \times 10^9}{7000} = 1.14 \times 10^{10} \text{ N.mm}$$

Where:

2

 $I_{beam} = 0.35 \times 7.7 \times 10^9 = 2.70 \times 10^9 \text{ mm}^4$

<u>CSA A.23.3-14 (10.14.1.2)</u>

spcolumn

Figure 4 - Beam Cross-Section

CSA A.23.3-14 (Figure N.10.15.1)

Using Figure N10.15.1(a) from CSA A23.3-14 $\rightarrow k = 0.835$ as shown in the figure below for the exterior column.

Figure 5 – Effective Length Factor (k) (Non-Sway Frame)

4. Check if Slenderness can be Neglected

CSA A23.3-14 allows to neglect the slenderness in a non-sway frame if:

 $\frac{k \times l_u}{r} \le \frac{25 - 10 \left(\frac{M_1}{M_2}\right)}{\sqrt{\frac{P_f}{f_c \times A_g}}}$ $r = \sqrt{\frac{I_g}{A_g}} = \sqrt{\frac{c^2}{12}} = \sqrt{\frac{500^2}{12}} = 144.34 \text{ mm}$

$$\frac{k \times l_u}{r} = \frac{0.835 \times (8600 - 500)}{144.34} = 46.86$$

Since the member is bent in double curvature, M_1/M_2 ratio shall be taken as negative. And M_1/M_2 shall not be taken less than -0.5. <u>CSA A.23.3-14 (10.15.2)</u>

$$\frac{M_1}{M_2} = -\frac{30.75}{281} = -0.11 > -0.5$$

$$\frac{25 - 10\left(\frac{M_1}{M_2}\right)}{\sqrt{\frac{P_f}{f_c \times A_g}}} = \frac{25 - 10(-0.11)}{\sqrt{\frac{4200}{40 \times (500 \times 500)}}} = \frac{25 + 1.10}{0.648} = 40.3$$

$$\frac{k \times l_u}{r} = 46.86 > \frac{25 - 10\left(\frac{M_1}{M_2}\right)}{\sqrt{\frac{P_f}{f_c \times A_g}}} = 40.3 \quad \therefore \text{ slenderness can't be neglected.}$$

5. Moment Magnification – Non-Sway Frame

$$M_{c} = \frac{C_{m}M_{2}}{1 - \frac{P_{f}}{\phi_{m}P_{c}}} \ge M_{2}$$
CSA A23.3-14 (10.15.3.1)

Where:

$$C_m = 0.6 + 0.4 \frac{M_1}{M_2} \ge 0.4$$

CSA A23.3-14 (10.15.3.2)

And, the member resistance factor would be $\phi_m = 0.75$

CSA A23.3-14 (10.15.3.1)

CSA A23.3-14 (Eq. 10.18)

Where:

 $P_c = \frac{\pi^2 EI}{\left(kl_u\right)^2}$

$$EI = \begin{cases} (a) \frac{0.2E_c I_g + E_s I_{st}}{1 + \beta_d} \\ (b) \frac{0.4E_c I_g}{1 + \beta_d} \end{cases}$$

$$CSA A23.3-14 (10.15.3.1)$$

There are two options for calculating the effective flexural stiffness of slender concrete columns *EI*. The first equation provides accurate representation of the reinforcement in the section and will be used in this example and is also used by the solver in <u>spColumn</u>. Further comparison of the available options is provided in "<u>Effective</u> <u>Flexural Stiffness for Critical Buckling Load of Concrete Columns</u>" technical note.

5.1. Calculation of Critical Load (Pc)

$$r = \sqrt{\frac{I_g}{A_g}} = \sqrt{\frac{500^4 / 12}{500^2}} = 144.34 \text{ mm}$$
CSA A23.3-14 (10.14.2)

With 12 - 25M reinforcement equally distributed on all sides and 500 mm x 500 mm column section

$$I_{st} = 0.176 \times \rho_t \times b \times h^3 \times \gamma^2$$

$$I_{st} = 0.176 \times \frac{12 \times 500}{500 \times 500} \times 500 \times 500^3 \times 0.75^2 = 1.485 \times 10^8 \text{ mm}^4$$

$$\beta_d = \frac{P_{f,sustained}}{P_f} = \frac{2220}{4200} = 0.529$$

$$EI = \frac{0.2E_c I_g + E_s I_{st}}{1 + \beta_d}$$

$$EI = \frac{0.2 \times (29602) \times (5.21 \times 10^9) + (200000) \times (1.485 \times 10^8)}{1 + 0.529} = 3.96 \times 10^{13} \text{ N.mm}^2$$

$$P_c = \frac{\pi^2 EI}{(kl_u)^2}$$

$$CSA A23.3 - I4 (Eq. 10.18)$$

$$P_c = \frac{\pi^2 \times (3.96 \times 10^{13})}{(0.835 \times (8600 - 500))^2} = 8544 \text{ kN}$$

5.2. Calculation of Magnified Moment (M_c)

$$C_{m} = 0.6 + 0.4 \frac{M_{1}}{M_{2}} \ge 0.4$$

$$C_{m} = 0.6 + 0.4 \left(-\frac{30.75}{281} \right) = 0.556 \ge 0.4$$
Check minimum moment:

$$(M_{2})_{\min} = P_{f}(15 + 0.03h)$$

$$(M_{2})_{\min} = 4200 \times (15 + 0.03 \times 500) / 1000 = 126 \text{ kN.m} < M_{2}$$

$$M_{c} = \frac{C_{m}M_{2}}{1 - \frac{P_{f}}{\phi_{m}P_{c}}} \ge M_{2}$$

$$CSA \ A23.3 - 14 \ (10.15.3.1)$$

$$M_c = \frac{0.556 \times 281}{1 - \frac{4200}{0.75 \times 8544}} = \frac{0.556 \times 281}{1 - 0.655} = 453.6 \text{ kN.m} \ge 281 \text{ kN.m}$$

The slenderness effects resulted in a 61% increase of the first-order moment.

6. Column Design

Based on the factored axial loads and magnified moments considering slenderness effects, the capacity of the assumed column section (500 mm \times 500 mm with 12 – 25M bars distributed all sides equal) will be checked and confirmed to finalize the design. A column interaction diagram will be generated using strain compatibility analysis, the detailed procedure to develop column interaction diagram can be found in "Interaction Diagram - Tied Reinforced Concrete Column" example.

Figure 6 – Designed Column Interaction Diagram

7. Column Design - spColumn Software

<u>spColumn</u> program performs the analysis of the reinforced concrete section conforming to the provisions of the Strength Design Method and Unified Design Provisions with all conditions of strength satisfying the applicable conditions of equilibrium and strain compatibility and includes slenderness effects using moment magnification method for sway and nonsway frames. For this column section, we ran in design mode with control points using the CSA A23.3-14. The graphical and text results are provided below for both input and output of the <u>spColumn</u> model.

CONCRETE SOFTWARE SOLUTIONS

Figure 7 – spColumn Model Input Wizard Windows

Figure 8 - Column Section Interaction Diagram about X-Axis (spColumn)

spColumn v6.50 Computer program for the Strength Design of Reinforced Concrete Sections Copyright - 1988-2019, STRUCTUREPOINT, LLC. All rights reserved

Structure Point

Licensee stated below acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program. Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6

Page | 2 11/4/2019 10:09 AM

Structure Point

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\CSA A23.3-14 Examples\Slenderness_Non-Sway Frame.col

Contents	
1. General Information	3
2. Material Properties	3
2.1. Concrete	3
2.2. Steel	3
3. Section	3
3.1. Shape and Properties	3
3.2. Section Figure	4
4. Reinforcement	4
4.1. Bar Set: CSA G30.18	4
4.2. Design Criteria	4
4.3. Confinement and Factors	4
4.4. Arrangement	5
5. Loading	5
5.1. Load Combinations	5
5.2. Service Loads	5
5.3. Sustained Load Factors	5
6. Slenderness	5
6.1. Sway Criteria	5
6.2. Columns	5
6.3. X - Beams	5
7. Moment Magnification	6
7.1. General Parameters	6
7.2. Effective Length Factors	6
7.3. Magnification Factors: X - axis	6
8. Factored Moments	6
8.1. X - axis	6
9. Factored Loads and Moments with Corresponding Capacity Ratios	7
10. Diagrams	8
10.1. PM at θ=0 [deg]	8

List of Figures

Figure	1: Column s	ection4	ļ

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\CSA A23.3-14 Examples\Slenderness_Non-Sway Frame.col

1. General Information

File Name	C:\CSA A23.3- 14\Slenderness_Non-Sway Frame.col
Project	Design of Braced Column
Column	Interior
Engineer	SP
Code	CSA A23.3-14
Bar Set	CSA G30.18
Units	Metric
Run Option	Design
Run Axis	X - axis
Slenderness	Considered
Column Type	Structural
Capacity Method	Moment capacity

2. Material Properties 2.1. Concrete

Туре	Standard	
f _c	40	MPa
Ec	29601.6	MPa
fc	31.6	MPa
ε _u	0.0035	mm/mm
β1	0.87	

2.2. Steel

Туре	Standard	
fy	400	MPa
E₅	200000	MPa
ε _{yt}	0.002	mm/mm

3. Section

3.1. Shape and Properties

Туре	Rectangular
Width	500 mm
Depth	500 mm
Ag	250000 mm ²
l _x	5.20833e+009 mm4
ly	5.20833e+009 mm4
۲ _x	144.338 mm
ry	144.338 mm
X _o	0 mm
Yo	0 mm

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\CSA A23.3-14 Examples\Slenderness_Non-Sway Frame.col Page | 4 11/4/2019 10:09 AM

3.2. Section Figure

Figure 1: Column section

4. Reinforcement

4.1. Bar Set: CSA G30.18

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	mm	mm²		mm	mm²		mm	mm²
#10	11.30	100.00	#15	16.00	200.00	#20	19.50	300.00
#25	25.20	500.00	#30	29.90	700.00	#35	35.70	1000.00
#45	43.70	1500.00	#55	56.40	2500.00			

4.2. Design Criteria

Bar selection	Min. number of bars
$A_{s,min} = 0.01 \times A_g$	2500 mm ²
$A_{s,max} = 0.08 \times A_g$	20000 mm ²
Allowable Capacity Ratio (<1 is safe)	1.00

4.3. Confinement and Factors

Confinement type	Tied
For #55 bars or less	#10 ties
For larger bars	#15 ties
Material Resistance Factors	
Axial compression, (a)	0.8
Steel (∮₅)	0.85
Concrete (¢c)	0.65
Minimum dimension, h	500 mm

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\CSA A23.3-14 Examples\Slenderness_Non-Sway Frame.col Page | 5 11/4/2019 10:09 AM

4.4. Arrangement

Pattern	All sides equal	
Bar layout	Rectangular	
Cover to	Longitudal bars	
Clear cover	50	mm
Bars	12 #25	
Total steel area, A₅	6000	mm ²
Rho	2.40	%
Minimum clear spacing	100	mm

5. Loading

5.1. Load Combinations

Combination	Dead	Live	Wind	EQ	Snow
U1	1.400	0.000	0.000	0.000	0.000
U2	1.250	1.500	0.000	0.000	0.000

5.2. Service Loads

No.	Load Case	Axial Load	Mx @ Top	Mx @ Bottom	Му @ Тор	My @ Bottom
		kN	kNm	kNm	kNm	kNm
1	Dead	1776.00	-130.00	-15.00	0.00	0.00
1	Live	1320.00	-79.00	-8.00	0.00	0.00
1	Wind	0.00	0.00	0.00	0.00	0.00
1	EQ	0.00	0.00	0.00	0.00	0.00
1	Snow	0.00	0.00	0.00	0.00	0.00

5.3. Sustained Load Factors

Load Case	Factor
	%
Dead	100
Live	0
Wind	0
EQ	0
Snow	0

6. Slenderness

6.1.	Sway	Crite	eria
------	------	-------	------

X-Axis Non-sway column

6.2. Columns

Column	Axis	Height	Width	Depth	1	f'c	E₀
		m	mm	mm	mm ⁴	MPa	MPa
Design	Х	8.1	500	500	5.20833e+009	40	29601.6
Above	Х	4.3	500	500	5.20833e+009	40	29601.6
Below	Х	4.3	500	500	5.20833e+009	40	29601.6

6.3. X - Beams

Beam	Length	Width	Depth	I	f'c	Ec
	m	mm	mm	mm ⁴	MPa	MPa
Above Left	7	740	500	7.70833e+009	40	29601.6

Page | 6 11/4/2019 10:09 AM

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\CSA A23.3-14 Examples\Slenderness_Non-Sway Frame.col

Beam	Length	Width	Depth	I	f'c	E₀
	m	mm	mm	mm ⁴	MPa	MPa
Above Right	7	740	500	7.70833e+009	40	29601.6
Below Left	7	740	500	7.70833e+009	40	29601.6
Below Right	7	740	500	7.70833e+009	40	29601.6

7. Moment Magnification

7.1. General Parameters

Factors	Code defaults
Stiffness reduction factor, ϕ_{κ}	0.75
Cracked section coefficients, cl(beams)	0.35
Cracked section coefficients, cl(columns)	0.7
0.2 E _c I _g + E _s I _{se} (X-axis)	6.05e+010 kNmm ²
Minimum eccentricity, e _{x min}	30.00 mm
k'	(P _f / (f _c *A _g)) ^{0.5}

7.2. Effective Length Factors

Axis	Ψ_{top}	Ψ _{bottom}	k (Nonsway)	k (Sway)	kl _u /r
Х	1.650	1.650	0.835	(N/A)	46.83

7.3. Magnification Factors: X - axis

* Slenderness need not be considered.

Load At Ends				Along Length								
Combo	•	∑Pr	Pc	∑Pc	β _{ds}	δ。	Pr	k'l _u /r	Pc	β_{dns}	Cm	δ
		kN	kN	kN			kN		kN			
1	U1	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	2486.40	(N/A)	6533.27	1.000	(N/A)	(N/A) *
1	U2	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	4200.00	(N/A)	8548.21	0.529	0.556	1.613

8. Factored Moments

NOTE: Each loading combination includes the following cases: Top - At column top Bot - At column bottom

8.1. X - axis

Load		1 st Order 2 nd Order			Ratio					
Comb	0		M _{ns}	Ma	Mr	M _{min}		M	Mc	2 nd /1 st
			kNm	kNm	kNm	kNm		kNm	kNm	
1	U1	Тор	-182.00	(N/A)	-182.00	(N/A)	M ₂ =	(N/A)	(N/A)	(N/A)
1	U1	Bot	21.00	(N/A)	21.00	(N/A)	M1=	(N/A)	(N/A)	(N/A)
1	U2	Тор	-281.00	(N/A)	-281.00	-126.00	M ₂ =	-281.00	-453.19	(N/A)
1	U2	Bot	30.75	(N/A)	30.75	126.00	M1=	30.75	203.21	(N/A)

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\CSA A23.3-14 Examples\Slenderness_Non-Sway Frame.col Page | 7 11/4/2019 10:09 AM

9. Factored Loads and Moments with Corresponding Capacity Ratios

NOTE: Calculations are based on "Moment Capacity" Method. Allowable Capacity (Ratio) <= 1.00 Each loading combination includes the following cases: Top - At column top Bot - At column bottom

No.	Load		Demand Capacity Parameters at Capacity		Capacity					
	Combo			Pr	M _{fx}	M _{fx} P _r M _{rx}		NA Depth	٤t	Ratio
				kN	kNm	kN	kNm	mm		
1	1	U1	Тор	2486.40	-182.00	2486.40	-583.06	274	0.00209	0.31
2	1	U1	Bot	2486.40	21.00	2486.40	583.06	274	0.00209	0.04
3	1	U2	Тор	4200.00	-453.19	4200.00	-455.21	379	0.00054	1.00
4	1	U2	Bot	4200.00	203.21	4200.00	455.21	379	0.00054	0.45

CONCRETE SOFTWARE SOLUTIONS

Structure Point

STRUCTUREPOINT - spColumn v6.50 Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\CSA A23.3-14 Examples\Slenderness_Non-Sway Frame.col

10. Diagrams 10.1. PM at θ=0 [deg]

• • • • 500	v ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓			
General Information				
Project	Design of Braced C	Column		
Column	Interior			
Engineer	SP			
Code	CSA A23.3-14			
Bar Set	CSA G30.18			
Units	Metric			
Run Option	Design			
Run Axis	X - axis			
Slenderness Considered				
Column Type	Structural			
Capacity Method	Moment capacity			
Materials				
f'e	40	MPa		
Ec	29601.6	мРа		
fy	400	MPa		
E _s	200000	мРа		
Section				
Туре	Rectangular			
Width	500	mm		
Depth	500	mm		
A ₉	250000	mm ²		
k.	5,20833e+009	mm ⁴		
y	5,20833e+009	mm ⁴		
Reinforcement	All eidee equal			
Barlavout	Rectangular			
Coverto	Longitudal bare			
Clear cover	Longitudal bars	0000		
Bars	10 #25			
Dars	12 #20			
Confinament luna	Tind			
comment type	iled			
Total stoel area. A	6000	page 2		
Pho Real Steel area, A _s	6000	mm ^e		
Nin, electronomine	2.40	70		
win, clear spacing	100	mm		

No.	Loa	ad Comb	00	Pr	M _{fx}	Ρ,	Mrx	Capacity
				kN	kNm	kN	kNm	Ratio
3	1	U2	Тор	4200.0	-453.2	4200.00	-455,21	1.00
4	1	U2	Bot	4200,0	203,2	4200.00	455,21	0,45
1	1	U1	Тор	2486.4	-182.0	2486.40	-583.06	0.31
2	1	U1	Bot	2486,4	21,0	2486.40	583,06	0,04

Max. Capacity Ratio: 1.00

Structure CONCRETE SOFTWARE SOLUTIONS

8. Summary and Comparison of Design Results

Analysis and design results from the hand calculations above are compared for the exact values obtained from spColumn model.

Table 3 – Parameters for moment magnification of column in Non-sway frame							
k EI, N.mm ² P _c , kN P _f , kN Magnification Factor M _c , kN.m							
Reference 0.840 4.10×10 ¹³ 8741 4200 1.560 438						438	
Hand 0.835 3.96×10 ¹³ 8544 4200 1.614 454						454	
spColumn 0.835 3.96×10 ¹³ 8548 4200 1.613 453						453	

All the results of the hand calculations illustrated above are in precise agreement with the automated exact results obtained from the spColumn program.

The notes below are helpful to the spColumn user in creating the design model:

- 1. The reference used the larger of the two equations provided by CSA A23.3-14 (10.15.3.1) to calculate EI since both EI equations are lower bounds. However, the hand solution and spColumn use the first equation since it provides an estimate that is dependent on the reinforcement configuration provided in the section. 2.
- 2. The reference used an approximate equation to calculate the radius of gyration (r) while the hand solution and <u>spColumn</u> use the exact equation to calculate r value.
- 3. In slenderness window, the default value for moment of inertia is based on a rectangular section. For nonrectangular sections, the moment of inertia should be entered manually by the user.

	Degiti Eocadori.
Above Left C Above Bight	Above Left Above Bight
C Below Left C Below Bight	C Below Left C Below Bight
Beam Above Left	Beam Above Left
No beam specified Copy From Beam Right	No beam specified Copy From Beam Right
Span (c/c): 7 m f'c: 40 MPa	Span (c/c): Z m f'c: 40 MPa
Width: 400 mm Ec: 29601.6 MPa	Width: 400 mm Ec: 29601.6 MPa
Depth: 500 mm Inertia: 4.17e+9 mm^4	Depth: 500 mm Inertial 7 70e+9 mm^
OK Cancel	OK Can <mark>c</mark> el
	If the section is not rectangular, the mome
	inertia can be entered manually by the use

Figure 9 - Moment of Inertia Considerations (spColumn)

9. Conclusions & Observations

The analysis of the reinforced concrete section performed by <u>spColumn</u> conforms to the provisions of the Strength Design Method and Unified Design Provisions with all conditions of strength satisfying the applicable conditions of equilibrium and strain compatibility and includes slenderness effects using moment magnification method for sway and nonsway frames.

CSA A23.3 provides multiple options for calculating values of *EI* and magnification factor leading to variability in the determination of the adequacy of a column section. Engineers must exercise judgment in selecting suitable options to match their design condition. The <u>spColumn</u> program utilizes the exact methods whenever possible and allows user to override the calculated values with direct input based on their engineering judgment wherever it is permissible.

spcolumn

10. Effects of M_{2,min} on Slenderness Calculations for Non-Sway Column per CSA A23.3

Provisions for the minimum moment, $M_{2,min}$, effects on slenderness calculations for non-sway columns per CSA A23.3 has gone through significant changes in the 2004, 2014, and 2019 code cycles. The 2019 edition of CSA A23.3 is to bring significant conservatism to non-sway column designs in both slenderness consideration and the moment magnification phases.

To illustrate relevant changes, additional load cases will be considered in this example to outline and discuss the evolution of CSA A23.3 provisions in slenderness calculations for non-sway columns where the largest first-order moment, $M_{2, min}$.

Note that:

- The column cross-section and reinforcement configuration are unchanged.
- The calculations shown below are based on CSA A23.3-14 provisions.
- The calculations not affected by the load changes are not repeated.
- The calculations based on revised provisions from CSA A23.3-19 will be covered in the 2019 version of this design example.

Table 4 – Additional column service load cases						
Lood Coso	Axial Load,	Bending Moment, kN.m				
Load Case	kN	Тор	Bottom			
Dead, D	1776	48	-8			
Live, L	1320	30	-5			

Dead Load Live Load

Figure 10 – Service Design Forces

Table 5 - Column factored loads									
CSA A23.3-14Axial Load CombinationAxial Load,Bending Moment, kN.mM HN mM Top,ns hN mM HN m						M _{Bottom,ns}	M _{Top,s}	M _{Bottom,s}	
Reference		kN Top Botton		Bottom	KIN.III	KIN.III	KIN.III	KIN.III	
Annex C Table C.1a	1	1.4D	2486	67.2	11.2	67.2	11.2	0.0	0.0
	2	1.25D + 1.5L	4200	105.0	17.5	105.0	17.5	0.0	0.0

k = 0.835

$$\frac{k \times l_u}{r} \le \frac{25 - 10 \left(\frac{M_1}{M_2}\right)}{\sqrt{\frac{P_f}{f_c \times A_g}}}$$

CSA A.23.3-14 (Eq. 10.16)

Where:

per CSA A23.3-04 and CSA A23.3-14:

- M_1/M_2 is not taken less than -0.5.
- M_1/M_2 shall be taken positive if the member is bent in single curvature.

per CSA A23.3-19:

- M_1/M_2 is not taken less than -0.5.
- M_1/M_2 shall be taken positive if the member is bent in single curvature and
- shall be taken as 1.0 if M₂ is less than M_{2,min}

Since the member is bent in single curvature, M_1/M_2 ratio shall be taken as positive. And M_1/M_2 shall not be taken less than -0.5. CSA A.23.3-14 (10.15.2)

$$\frac{M_1}{M_2} = \frac{17.5}{105} = 0.167 > -0.5$$

 $P_c = \frac{\pi^2 EI}{\left(kl_u\right)^2}$

$$\frac{25-10\left(\frac{M_1}{M_2}\right)}{\sqrt{\frac{P_f}{f_c \times A_g}}} = \frac{25-10(0.167)}{\sqrt{\frac{4200}{40 \times (500 \times 500)}}} \frac{25-1.67}{0.648} = 36$$

$$\frac{k \times l_u}{r} = 46.86 > \frac{25 - 10\left(\frac{M_1}{M_2}\right)}{\sqrt{\frac{P_f}{f_c} \times A_g}} = 36 \qquad \therefore \text{ slenderness can't be neglected.}$$

CSA A23.3-14 (Eq. 10.18)

CSA A23.3-14 (10.15.3.2)

 $P_{c} = 8544 \text{ kN}$

$$C_m = 0.6 + 0.4 \frac{M_1}{M_2} \ge 0.4$$

CSA A23.3-04, clause 10.15.3.1 stated that " M_2 in Equation 10.16 shall not be taken as less than $P_f(15+0.03h)$ about each axis separately."

CSA A23.3-14, clause 10.15.3.1 stated that " M_2 in Equation 10.17 shall not be taken as less than $P_f(15+0.03h)$ about each axis separately with the member bent in single curvature with C_m taken as 1.0."

The CSA A23.3-14, clause 10.15.3.1 provides unclear guidance implying the M₂ shall not be taken less than the minimum moment, $P_f(15+0.03h)$ with members bent in single curvature only. This provision is revised entirely and clarified in CSA A23.3-19 as follows to consistently require C_m = 1.0 in all cases where M_{2,min} exceeds M₂.

CSA A23.3-19, clause 10.15.3.1 states that " M_2 in Equation 10.17 shall not be taken as less than $M_{2,min}$ about each axis separately. <u>If $M_{2,min}$ exceeds M_2 , C_m shall be taken as equal to 1.0."</u>

$$C_m = 0.6 + 0.4 \left(\frac{17.5}{105}\right) = 0.667 \ge 0.4$$

 $\left(M_2\right)_{\min} = P_f (15 + 0.03h) = 126 \text{ kN.m} > M_2 = 105 \text{ kN.m}$
 $\therefore M_2 = 126 \text{ kN.m}$

$$M_c = \frac{C_m M_2}{1 - \frac{P_f}{\phi_m P_c}} \ge M_2$$

CSA A23.3-14 (10.15.3.1)

 $M_c = \frac{0.667 \times 126}{1 - \frac{4200}{0.75 \times 8544}} = \frac{0.667 \times 126}{1 - 0.655} = 243.8 \text{ kN.m} \ge 126 \text{ kN.m}$

Table 6 – Parameters for moment magnification of column in Non-sway frame (revised loads)								
Cm M2, kN.m M2,min, kN.m Magnification Factor Mc, kN.m								
Hand	0.667	105	126	1.935	243.8			
spColumn 0.667 105 126 1.933 243.6								

Summary and Observations:

- 1. When using CSA A23.3-14, the first-order moment has been increased by 93.5% ($M_2 = 105$ kN.m, $M_c = 243.8$ kN.m) since the largest first-order moment value is less than the minimum moment ($M_{2,min}$).
- Further magnification is expected when using CSA A23.3-19. The first-order moment increased by 248% due to the adjustment on clause 10.15.3.1 in CSA A23.3-19 where C_m shall be taken as equal to 1.0 when M_{2,min} exceeds M₂. (M₂ = 105 kN.m, M_{2,min} = 126 kN.m, and M_c = 365.6 kN.m)

3. Excerpts from the <u>spColumn</u> model results for the column with modified loads are shown below for demonstration.

5. Loading

5.1. Load Combinations

Combination	Dead	Live	Wind	EQ	Snow
U1	1.400	0.000	0.000	0.000	0.000
U2	1.250	1.500	0.000	0.000	0.000

5.2. Service Loads

No.	Load Case	Axial Load	Mx @ Top	Mx @ Bottom	My @ Top	My @ Bottom
		kN	kNm	kNm	kNm	kNm
1	Dead	1776.00	48.00	-8.00	0.00	0.00
1	Live	1320.00	30.00	-5.00	0.00	0.00
1	Wind	0.00	0.00	0.00	0.00	0.00
1	EQ	0.00	0.00	0.00	0.00	0.00
1	Snow	0.00	0.00	0.00	0.00	0.00

CONCRETE SOFTWARE SOLUTIONS

7. Moment Magnification

7.1. General Parameters	
Factors	Code defaults
Stiffness reduction factor, ϕ_K	0.75
Cracked section coefficients, cl(beams)	0.35
Cracked section coefficients, cl(columns)	0.7
0.2 E _c I _g + E _s I _{se} (X-axis)	6.05e+010 kNmm ²
Minimum eccentricity, ex min	30.00 mm
k'	(Pr / (fc*Ag)) ^{0.5}

7.2. Effective Length Factors

Axis	Ψ _{top}	Ψ_{bottom}	k (Nonsway)	k (Sway)	kl _u /r
Х	1.650	1.650	0.835	(N/A)	46.83

7.3. Magnification Factors: X - axis

Load At Ends					Along Length							
Combo)	∑Pr	Pc	∑Pc	βds	δs	Pr	k'lu/r	Pc	βdns	Cm	δ
		kN	kN	kN			kN		kN			
1	U1	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	2486.40	(N/A)	6533.27	1.000	0.667	1.353
1	U2	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	4200.00	(N/A)	8548.21	0.529	0.667	1.933

8. Factored Moments

NOTE: Each loading combination includes the following cases: Top - At column top Bot - At column bottom

8.1. X - axis

Load						2 nd Order			Ratio	
Combo			M _{ns}	Ma	M _s M _f			M	Mc	2 nd /1 st
			kNm	kNm	kNm	kNm		kNm	kNm	
1	U1	Тор	67.20	(N/A)	67.20	74.59	M ₂ =	67.20	100.96	(N/A)
1	U1	Bot	11.20	(N/A)	11.20	74.59	M1=	11.20	100.96	(N/A)
1	U2	Тор	105.00	(N/A)	105.00	126.00	M ₂ =	105.00	243.55	(N/A)
1	U2	Bot	17.50	(N/A)	17.50	126.00	M1=	17.50	243.55	(N/A)

9. Factored Loads and Moments with Corresponding Capacity Ratios

NOTE: Calculations are based on "Moment Capacity" Method. Each loading combination includes the following cases: Top - At column top Bot - At column bottom

No. Load Demand Capacity Parameters at Capacity Capacity Mtx Combo Pr Pr NA Depth Ratio Mrx ٤t kΝ kNm kΝ kNm mm 2486.40 100.96 583.06 U1 2486.40 274 0.00209 0.17 1 1 Тор 2 U1 Bot 2486.40 100.96 2486.40 583.06 274 0.00209 0.17 1 3 U2 4200.00 243.55 4200.00 455.21 379 0.00054 0.54 1 Тор 4 1 U2 Bot 4200.00 243.55 4200.00 455.21 379 0.00054 0.54

CONCRETE SOFTWARE SOLUTIONS

10. Diagrams

10.1. PM at θ=0 [deg]

No.	Load Combo			Pr	Mfx	Ρ,	Mrx	Capacity
				kN	kNm	kN	kNm	Ratio
3	1	U2	Тор	4200.0	243.6	4200.00	455,21	0.54
4	1	U2	Bot	4200,0	243,6	4200.00	455,21	0,54
1	1	U1	Тор	2486.4	101.0	2486.40	583.06	0.17
2	1	U1	Bot	2486,4	101.0	2486,40	583,06	0.17

Max. Capacity Ratio: 0.54